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Principal component analysis (PCA) is a multivariate technique that analyzes a data
table in which observations are described by several inter-correlated quantitative
dependent variables. Its goal is to extract the important information from the table,
to represent it as a set of new orthogonal variables called principal components, and
to display the pattern of similarity of the observations and of the variables as points
in maps. The quality of the PCA model can be evaluated using cross-validation
techniques such as the bootstrap and the jackknife. PCA can be generalized
as correspondence analysis (CA) in order to handle qualitative variables and as
multiple factor analysis (MFA) in order to handle heterogeneous sets of variables.
Mathematically, PCA depends upon the eigen-decomposition of positive semi-
definite matrices and upon the singular value decomposition (SVD) of rectangular
matrices.  2010 John Wiley & Sons, Inc. WIREs Comp Stat 2010 2 433–459 DOI: 10.1002/wics.101
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Principal component analysis (PCA) is probably the
most popular multivariate statistical technique

and it is used by almost all scientific disciplines. It
is also likely to be the oldest multivariate technique.
In fact, its origin can be traced back to Pearson1 or
even Cauchy2 [see Ref 3, p. 416], or Jordan4 and also
Cayley, Silverster, and Hamilton, [see Refs 5,6, for
more details] but its modern instantiation was formal-
ized by Hotelling7 who also coined the term principal
component. PCA analyzes a data table representing
observations described by several dependent vari-
ables, which are, in general, inter-correlated. Its goal
is to extract the important information from the data
table and to express this information as a set of new
orthogonal variables called principal components.
PCA also represents the pattern of similarity of the
observations and the variables by displaying them as
points in maps [see Refs 8–10 for more details].

PREREQUISITE NOTIONS AND
NOTATIONS

Matrices are denoted in upper case bold, vectors are
denoted in lower case bold, and elements are denoted
in lower case italic. Matrices, vectors, and elements
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from the same matrix all use the same letter (e.g.,
A, a, a). The transpose operation is denoted by the
superscriptT. The identity matrix is denoted I.

The data table to be analyzed by PCA comprises
I observations described by J variables and it is
represented by the I × J matrix X, whose generic
element is xi,j. The matrix X has rank L where
L ≤ min

{
I, J

}
.

In general, the data table will be preprocessed
before the analysis. Almost always, the columns of X
will be centered so that the mean of each column
is equal to 0 (i.e., XT1 = 0, where 0 is a J by
1 vector of zeros and 1 is an I by 1 vector of
ones). If in addition, each element of X is divided
by

√
I (or

√
I − 1), the analysis is referred to as

a covariance PCA because, in this case, the matrix
XTX is a covariance matrix. In addition to centering,
when the variables are measured with different units,
it is customary to standardize each variable to unit
norm. This is obtained by dividing each variable by
its norm (i.e., the square root of the sum of all the
squared elements of this variable). In this case, the
analysis is referred to as a correlation PCA because,
then, the matrix XTX is a correlation matrix (most
statistical packages use correlation preprocessing as a
default).

The matrix X has the following singular value
decomposition [SVD, see Refs 11–13 and Appendix B
for an introduction to the SVD]:

X = P�QT (1)

where P is the I × L matrix of left singular vectors,
Q is the J × L matrix of right singular vectors, and �
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is the diagonal matrix of singular values. Note that
�2 is equal to � which is the diagonal matrix of the
(nonzero) eigenvalues of XTX and XXT.

The inertia of a column is defined as the sum of
the squared elements of this column and is computed
as

γ 2
j =

I∑
i

x2
i,j . (2)

The sum of all the γ 2
j is denoted I and it is called

the inertia of the data table or the total inertia. Note
that the total inertia is also equal to the sum of
the squared singular values of the data table (see
Appendix B).

The center of gravity of the rows [also called
centroid or barycenter, see Ref 14], denoted g, is the
vector of the means of each column of X. When X is
centered, its center of gravity is equal to the 1 × J row
vector 0T.

The (Euclidean) distance of the i-th observation
to g is equal to

d2
i,g =

J∑
j

(
xi,j − gj

)2
. (3)

When the data are centered Eq. 3 reduces to

d2
i,g =

J∑
j

x2
i,j. (4)

Note that the sum of all d2
i,g is equal to I which is the

inertia of the data table .

GOALS OF PCA

The goals of PCA are to

(1) extract the most important information from the
data table;

(2) compress the size of the data set by keeping only
this important information;

(3) simplify the description of the data set; and

(4) analyze the structure of the observations and the
variables.

In order to achieve these goals, PCA computes
new variables called principal components which
are obtained as linear combinations of the original
variables. The first principal component is required

to have the largest possible variance (i.e., inertia and
therefore this component will ‘explain’ or ‘extract’
the largest part of the inertia of the data table).
The second component is computed under the
constraint of being orthogonal to the first component
and to have the largest possible inertia. The other
components are computed likewise (see Appendix A
for proof). The values of these new variables for
the observations are called factor scores, and these
factors scores can be interpreted geometrically as the
projections of the observations onto the principal
components.

Finding the Components
In PCA, the components are obtained from the SVD
of the data table X. Specifically, with X = P�QT

(cf. Eq. 1), the I × L matrix of factor scores, denoted
F, is obtained as:

F = P�. (5)

The matrix Q gives the coefficients of the linear
combinations used to compute the factors scores.
This matrix can also be interpreted as a projection
matrix because multiplying X by Q gives the values
of the projections of the observations on the principal
components. This can be shown by combining Eqs. 1
and 5 as:

F = P� = P�QTQ = XQ. (6)

The components can also be represented
geometrically by the rotation of the original axes.
For example, if X represents two variables, the length
of a word (Y) and the number of lines of its dictionary
definition (W), such as the data shown in Table 1, then
PCA represents these data by two orthogonal factors.
The geometric representation of PCA is shown in
Figure 1. In this figure, we see that the factor scores
give the length (i.e., distance to the origin) of the
projections of the observations on the components.
This procedure is further illustrated in Figure 2. In
this context, the matrix Q is interpreted as a matrix
of direction cosines (because Q is orthonormal). The
matrix Q is also called a loading matrix. In this
context, the matrix X can be interpreted as the
product of the factors score matrix by the loading
matrix as:

X = FQT with FTF = �2 and QTQ = I. (7)

This decomposition is often called the bilinear
decomposition of X [see, e.g., Ref 15].
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Projecting New Observations onto the
Components
Equation 6 shows that matrix Q is a projection
matrix which transforms the original data matrix
into factor scores. This matrix can also be used to
compute factor scores for observations that were
not included in the PCA. These observations are
called supplementary or illustrative observations. By
contrast, the observations actually used to compute
the PCA are called active observations. The factor
scores for supplementary observations are obtained
by first positioning these observations into the PCA
space and then projecting them onto the principal
components. Specifically a 1 × J row vector xT

sup, can
be projected into the PCA space using Eq. 6. This
gives the 1 × L vector of factor scores, denoted fT

sup,
which is computed as:

fT
sup = xT

supQ. (8)

If the data table has been preprocessed (e.g., centered
or normalized), the same preprocessing should be
applied to the supplementary observations prior to
the computation of their factor scores.

As an illustration, suppose that—in addition to
the data presented in Table 1—we have the French
word ‘sur’ (it means ‘on’). It has Ysur = 3 letters, and
our French dictionary reports that its definition has
Wsur = 12 lines. Because sur is not an English word,
we do not want to include it in the analysis, but
we would like to know how it relates to the English
vocabulary. So, we decided to treat this word as a
supplementary observation.

The first step is to preprocess this supplementary
observation in a identical manner to the active
observations. Because the data matrix was centered,
the values of this observation are transformed into
deviations from the English center of gravity. We find
the following values:

ysur = Ysur − MY = 3 − 6 = −3 and

wsur = Wsur − MW = 12 − 8 = 4.

Then we plot the supplementary word in the graph
that we have already used for the active analysis.
Because the principal components and the original
variables are in the same space, the projections of the
supplementary observation give its coordinates (i.e.,
factor scores) on the components. This is shown in
Figure 3. Equivalently, the coordinates of the projec-
tions on the components can be directly computed
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FIGURE 1 | The geometric steps for finding the components of a
principal component analysis. To find the components (1) center the
variables then plot them against each other. (2) Find the main direction
(called the first component) of the cloud of points such that we have the
minimum of the sum of the squared distances from the points to the
component. Add a second component orthogonal to the first such that
the sum of the squared distances is minimum. (3) When the
components have been found, rotate the figure in order to position the
first component horizontally (and the second component vertically),
then erase the original axes. Note that the final graph could have been
obtained directly by plotting the observations from the coordinates
given in Table 1.
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from Eq. 8 (see also Table 3 for the values of
Q) as:

fT
sup = xT

supQ = [−3 4
] ×

[−0.5369 0.8437
0.8437 0.5369

]
= [

4.9853 − 0.3835
]
. (9)

INTERPRETING PCA

Inertia explained by a component
The importance of a component is reflected by its
inertia or by the proportion of the total inertia
‘‘explained’’ by this factor. In our example (see
Table 2) the inertia of the first component is equal
to 392 and this corresponds to 83% of the total
inertia.

Contribution of an Observation to a
Component
Recall that the eigenvalue associated to a component
is equal to the sum of the squared factor scores
for this component. Therefore, the importance of an
observation for a component can be obtained by the
ratio of the squared factor score of this observation by
the eigenvalue associated with that component. This
ratio is called the contribution of the observation to the
component. Formally, the contribution of observation
i to component � is, denoted ctri,�, obtained as:

ctri,� = f 2
i,�∑

i

f 2
i,�

= f 2
i,�

λ�

(10)
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FIGURE 3 | How to find the coordinates (i.e., factor scores) on the
principal components of a supplementary observation: (a) the French
word sur is plotted in the space of the active observations from its
deviations to the W and Y variables; and (b) The projections of the sur
on the principal components give its coordinates.

where λ� is the eigenvalue of the �-th component.
The value of a contribution is between 0 and 1 and,
for a given component, the sum of the contributions
of all observations is equal to 1. The larger the
value of the contribution, the more the observation
contributes to the component. A useful heuristic
is to base the interpretation of a component on
the observations whose contribution is larger than
the average contribution (i.e., observations whose
contribution is larger than 1/I). The observations
with high contributions and different signs can then
be opposed to help interpret the component because
these observations represent the two endpoints of this
component.

The factor scores of the supplementary obser-
vations are not used to compute the eigenvalues and
therefore their contributions are generally not com-
puted.

Squared Cosine of a Component with an
Observation
The squared cosine shows the importance of a
component for a given observation. The squared
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TABLE 2 Eigenvalues and Percentage of Explained Inertia by Each
Component

λi Cumulated Percent of Cumulated
Component (eigenvalue) (eigenvalues) of Inertia (percentage)

1 392 392 83.29 83.29

2 52 444 11.71 100.00

cosine indicates the contribution of a component to
the squared distance of the observation to the origin.
It corresponds to the square of the cosine of the
angle from the right triangle made with the origin, the
observation, and its projection on the component and
is computed as:

cos2
i,� =

f 2
i,�∑

�

f 2
i,�

=
f 2
i,�

d2
i,g

(11)

where d2
i,g is the squared distance of a given

observation to the origin. The squared distance, d2
i,g, is

computed (thanks to the Pythagorean theorem) as the
sum of the squared values of all the factor scores of
this observation (cf. Eq. 4). Components with a large
value of cos2

i,� contribute a relatively large portion to
the total distance and therefore these components are
important for that observation.

The distance to the center of gravity is defined for
supplementary observations and the squared cosine
can be computed and is meaningful. Therefore, the
value of cos2 can help find the components that are
important to interpret both active and supplementary
observations.

Loading: Correlation of a Component and a
Variable
The correlation between a component and a variable
estimates the information they share. In the PCA
framework, this correlation is called a loading. Note
that the sum of the squared coefficients of correlation
between a variable and all the components is equal
to 1. As a consequence, the squared loadings are easier
to interpret than the loadings (because the squared
loadings give the proportion of the variance of the
variables explained by the components). Table 3 gives
the loadings as well as the squared loadings for the
word length and definition example.

It is worth noting that the term ‘loading’ has
several interpretations. For example, as previously
mentioned, the elements of matrix Q (cf. Eq. B.1)
are also called loadings. This polysemy is a potential
source of confusion, and therefore it is worth checking

what specific meaning of the word ‘loadings’ has been
chosen when looking at the outputs of a program or
when reading papers on PCA. In general, however,
different meanings of ‘loadings’ lead to equivalent
interpretations of the components. This happens
because the different types of loadings differ mostly
by their type of normalization. For example, the
correlations of the variables with the components
are normalized such that the sum of the squared
correlations of a given variable is equal to one; by
contrast, the elements of Q are normalized such that
the sum of the squared elements of a given component
is equal to one.

Plotting the Correlations/Loadings of the
Variables with the Components
The variables can be plotted as points in the
component space using their loadings as coordinates.
This representation differs from the plot of the
observations: The observations are represented by
their projections, but the variables are represented by
their correlations. Recall that the sum of the squared
loadings for a variable is equal to one. Remember,
also, that a circle is defined as the set of points
with the property that the sum of their squared
coordinates is equal to a constant. As a consequence,
when the data are perfectly represented by only two
components, the sum of the squared loadings is equal
to one, and therefore, in this case, the loadings will
be positioned on a circle which is called the circle of
correlations. When more than two components are
needed to represent the data perfectly, the variables
will be positioned inside the circle of correlations.
The closer a variable is to the circle of correlations,
the better we can reconstruct this variable from the
first two components (and the more important it is to
interpret these components); the closer to the center
of the plot a variable is, the less important it is for the
first two components.

Figure 4 shows the plot of the loadings of the
variables on the components. Each variable is a point
whose coordinates are given by the loadings on the
principal components.

We can also use supplementary variables to
enrich the interpretation. A supplementary variable
should be measured for the same observations
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TABLE 3 Loadings (i.e., Coefficients of Correlation between Variables and Components)
and Squared Loadings

Loadings Squared Loadings Q

Component Y W Y W Y W

1 −0.9927 −0.9810 0.9855 0.9624 −0.5369 0.8437

2 0.1203 −0.1939 0.0145 0.0376 0.8437 0.5369∑
1.0000 1.0000

The elements of matrix Q are also provided.

TABLE 4 Supplementary Variables for
the Example Length of Words and Number
of lines

Frequency # Entries

Bag 8 6

Across 230 3

On 700 12

Insane 1 2

By 500 7

Monastery 1 1

Relief 9 1

Slope 2 6

Scoundrel 1 1

With 700 5

Neither 7 2

Pretentious 1 1

Solid 4 5

This 500 9

For 900 7

Therefore 3 1

Generality 1 1

Arise 10 4

Blot 1 4

Infectious 1 2

‘Frequency’ is expressed as number of occur-
rences per 100,000 words, ‘# Entries’ is
obtained by counting the number of entries
for the word in the dictionary.

used for the analysis (for all of them or part
of them, because we only need to compute a
coefficient of correlation). After the analysis has been
performed, the coefficients of correlation (i.e., the
loadings) between the supplementary variables and the
components are computed. Then the supplementary
variables are displayed in the circle of correlations
using the loadings as coordinates.

For example, we can add two supplementary
variables to the word length and definition example.

TABLE 5 Loadings (i.e., Coefficients of Correlation) and Squared
Loadings between Supplementary Variables and Components

Loadings Squared Loadings

Component Frequency # Entries Frequency # Entries

1 −0.3012 0.6999 0.0907 0.4899

2 −0.7218 −0.4493 0.5210 0.2019∑
.6117 .6918

These data are shown in Table 4. A table of loadings
for the supplementary variables can be computed
from the coefficients of correlation between these
variables and the components (see Table 5). Note
that, contrary to the active variables, the squared
loadings of the supplementary variables do not add
up to 1.

STATISTICAL INFERENCE:
EVALUATING THE QUALITY
OF THE MODEL

Fixed Effect Model
The results of PCA so far correspond to a fixed
effect model (i.e., the observations are considered
to be the population of interest, and conclusions
are limited to these specific observations). In this
context, PCA is descriptive and the amount of the
variance of X explained by a component indicates its
importance.

For a fixed effect model, the quality of the
PCA model using the first M components is obtained
by first computing the estimated matrix, denoted
X̂[M], which is matrix X reconstituted with the first
M components. The formula for this estimation is
obtained by combining Eqs 1, 5, and 6 in order to
obtain

X = FQT = XQQT . (12)
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FIGURE 4 | Circle of correlations and plot of the loadings of (a) the
variables with principal components 1 and 2, and (b) the variables and
supplementary variables with principal components 1 and 2. Note that
the supplementary variables are not positioned on the unit circle.

Then, the matrix X̂[M] is built back using Eq. 12
keeping only the first M components:

X̂[M] = P[M]�[M]Q[M]T

= F[M]Q[M]T

= XQ[M]Q[M]T (13)

where P[M], �[M], and Q[M] represent, respectively
the matrices P, �, and Q with only their first M
components. Note, incidentally, that Eq. 7 can be
rewritten in the current context as:

X = X̂[M] + E = F[M]Q[M]T + E (14)

(where E is the error matrix, which is equal to
X − X̂[M]).

To evaluate the quality of the reconstitution of
X with M components, we evaluate the similarity

between X and X̂[M]. Several coefficients can be used
for this task [see, e.g., Refs 16–18]. The squared
coefficient of correlation is sometimes used, as well as
the RV coefficient.18,19 The most popular coefficient,
however, is the residual sum of squares (RESS). It is
computed as:

RESSM = ‖X − X̂[M]‖2

= trace
{
ETE

}

= I −
M∑

�=1

λ� (15)

where ‖ ‖ is the norm of X (i.e., the square root of the
sum of all the squared elements of X), and where the
trace of a matrix is the sum of its diagonal elements.
The smaller the value of RESS, the better the PCA
model. For a fixed effect model, a larger M gives a
better estimation of X̂[M]. For a fixed effect model,
the matrix X is always perfectly reconstituted with L
components (recall that L is the rank of X).

In addition, Eq. 12 can be adapted to compute
the estimation of the supplementary observations as

x̂[M]
sup = xsupQ[M]Q[M]T. (16)

Random Effect Model
In most applications, the set of observations represents
a sample from a larger population. In this case, the
goal is to estimate the value of new observations from
this population. This corresponds to a random effect
model. In order to estimate the generalization capacity
of the PCA model, we cannot use standard parametric
procedures. Therefore, the performance of the PCA
model is evaluated using computer-based resampling
techniques such as the bootstrap and cross-validation
techniques where the data are separated into a learning
and a testing set. A popular cross-validation technique
is the jackknife (aka ‘leave one out’ procedure). In the
jackknife,20–22 each observation is dropped from the
set in turn and the remaining observations constitute
the learning set. The learning set is then used to
estimate (using Eq. 16) the left-out observation which
constitutes the testing set. Using this procedure, each
observation is estimated according to a random effect
model. The predicted observations are then stored in
a matrix denoted X̃.

The overall quality of the PCA random effect
model using M components is evaluated as the
similarity between X and X̃[M]. As with the fixed
effect model, this can also be done with a squared
coefficient of correlation or (better) with the RV

440  2010 John Wi ley & Sons, Inc. Volume 2, Ju ly/August 2010



WIREs Computational Statistics Principal component analysis

coefficient. Similar to RESS, one can use the predicted
residual sum of squares (PRESS). It is computed as:

PRESSM = ‖X − X̃[M]‖2 (17)

The smaller the PRESS the better the quality of the
estimation for a random model.

Contrary to what happens with the fixed effect
model, the matrix X is not always perfectly reconsti-
tuted with all L components. This is particularly the
case when the number of variables is larger than the
number of observations (a configuration known as the
‘small N large P’ problem in the literature).

How Many Components?
Often, only the important information needs to be
extracted from a data matrix. In this case, the problem
is to figure out how many components need to be
considered. This problem is still open, but there
are some guidelines [see, e.g.,Refs 9,8,23]. A first
procedure is to plot the eigenvalues according to their
size [the so called ‘‘scree,’’ see Refs 8,24 and Table 2]
and to see if there is a point in this graph (often called
an ‘elbow’) such that the slope of the graph goes from
‘steep’ to ‘‘flat’’ and to keep only the components
which are before the elbow. This procedure, somewhat
subjective, is called the scree or elbow test.

Another standard tradition is to keep only
the components whose eigenvalue is larger than the
average. Formally, this amount to keeping the �-th
component if

λ� >
1
L

L∑
�

λ� = 1
L
I (18)

(where L is the rank of X). For a correlation PCA,
this rule boils down to the standard advice to ‘keep
only the eigenvalues larger than 1’ [see, e.g., Ref
25]. However, this procedure can lead to ignoring
important information [see Ref 26 for an example of
this problem].

Random Model
As mentioned earlier, when using a random model,
the quality of the prediction does not always increase
with the number of components of the model. In fact,
when the number of variables exceeds the number
of observations, quality typically increases and then
decreases. When the quality of the prediction decreases
as the number of components increases this is an
indication that the model is overfitting the data (i.e.,
the information in the learning set is not useful to fit
the testing set). Therefore, it is important to determine

the optimal number of components to keep when the
goal is to generalize the conclusions of an analysis to
new data.

A simple approach stops adding components
when PRESS decreases. A more elaborated approach
[see e.g., Refs 27–31] begins by computing, for each
component �, a quantity denoted Q2

� is defined as:

Q2
� = 1 − PRESS�

RESS�−1
(19)

with PRESS� (RESS�) being the value of PRESS (RESS)
for the �-th component (where RESS0 is equal to
the total inertia). Only the components with Q2

�

greater or equal to an arbitrary critical value (usually
1 − 0.952 = 0.0975) are kept [an alternative set of
critical values sets the threshold to 0.05 when I ≤ 100
and to 0 when I > 100; see Ref 28].

Another approach—based on cross-validation—
to decide upon the number of components to keep uses
the index W� derived from Refs 32 and 33. In contrast
to Q2

� , which depends on RESS and PRESS, the index
W�, depends only upon PRESS. It is computed for the
�-th component as

W� = PRESS�−1 − PRESS�

PRESS�

× dfresidual, �

df�
, (20)

where PRESS0 is the inertia of the data table, df� is the
number of degrees of freedom for the �-th component
equal to

df� = I + J − 2�, (21)

and dfresidual, � is the residual number of degrees of
freedom which is equal to the total number of degrees
of freedom of the table [equal to J(I − 1)] minus the
number of degrees of freedom used by the previous
components. The value of dfresidual, � is obtained as:

dfresidual, � = J(I − 1) −
�∑

k=1

(I + J − 2k)

= J(I − 1) − �(I + J − � − 1). (22)

Most of the time, Q2
� and W� will agree on the number

of components to keep, but W� can give a more
conservative estimate of the number of components
to keep than Q2

� . When J is smaller than I, the value
of both Q2

L and WL is meaningless because they both
involve a division by zero.
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Bootstrapped Confidence Intervals
After the number of components to keep has been
determined, we can compute confidence intervals
for the eigenvalues of X̃ using the bootstrap.34–39

To use the bootstrap, we draw a large number of
samples (e.g., 1000 or 10,000) with replacement
from the learning set. Each sample produces a set
of eigenvalues. The whole set of eigenvalues can then
be used to compute confidence intervals.

ROTATION
After the number of components has been determined,
and in order to facilitate the interpretation, the
analysis often involves a rotation of the components
that were retained [see, e.g., Ref 40 and 67, for
more details]. Two main types of rotation are used:
orthogonal when the new axes are also orthogonal
to each other, and oblique when the new axes are
not required to be orthogonal. Because the rotations
are always performed in a subspace, the new axes
will always explain less inertia than the original
components (which are computed to be optimal).
However, the part of the inertia explained by the
total subspace after rotation is the same as it was
before rotation (only the partition of the inertia has
changed). It is also important to note that because
rotation always takes place in a subspace (i.e., the
space of the retained components), the choice of this
subspace strongly influences the result of the rotation.
Therefore, it is strongly recommended to try several
sizes for the subspace of the retained components in
order to assess the robustness of the interpretation of
the rotation. When performing a rotation, the term
loadings almost always refer to the elements of matrix
Q. We will follow this tradition in this section.

Orthogonal Rotation
An orthogonal rotation is specified by a rotation
matrix, denoted R, where the rows stand for the
original factors and the columns for the new (rotated)
factors. At the intersection of row m and column n we
have the cosine of the angle between the original axis
and the new one: rm,n = cos θm,n. A rotation matrix
has the important property of being orthonormal
because it corresponds to a matrix of direction cosines
and therefore RTR = I.

Varimax rotation, developed by Kaiser,41 is the
most popular rotation method. For varimax a simple
solution means that each component has a small
number of large loadings and a large number of zero
(or small) loadings. This simplifies the interpretation
because, after a varimax rotation, each original

variable tends to be associated with one (or a small
number) of the components, and each component
represents only a small number of variables. In
addition, the components can often be interpreted
from the opposition of few variables with positive
loadings to few variables with negative loadings.
Formally varimax searches for a linear combination
of the original factors such that the variance of the
squared loadings is maximized, which amounts to
maximizing

ν =
∑

(q2
j,� − q2

� )2 (23)

with q2
j,� being the squared loading of the j-th variable

of matrix Q on component � and q2
� being the mean

of the squared loadings.

Oblique Rotations
With oblique rotations, the new axes are free to
take any position in the component space, but the
degree of correlation allowed among factors is small
because two highly correlated components are better
interpreted as only one factor. Oblique rotations,
therefore, relax the orthogonality constraint in order
to gain simplicity in the interpretation. They were
strongly recommended by Thurstone,42 but are used
more rarely than their orthogonal counterparts.

For oblique rotations, the promax rotation has
the advantage of being fast and conceptually simple.
The first step in promax rotation defines the target
matrix, almost always obtained as the result of a
varimax rotation whose entries are raised to some
power (typically between 2 and 4) in order to force
the structure of the loadings to become bipolar.
The second step is obtained by computing a least
square fit from the varimax solution to the target
matrix. Promax rotations are interpreted by looking
at the correlations—regarded as loadings—between
the rotated axes and the original variables. An
interesting recent development of the concept of
oblique rotation corresponds to the technique of
independent component analysis (ica) where the
axes are computed in order to replace the notion
of orthogonality by statistical independence [see Ref
43,for a tutorial].

When and Why Using Rotations
The main reason for using rotation is to facilitate the
interpretation. When the data follow a model (such
as the psychometric model) stipulating (1) that each
variable load on only one factor and (2) that there
is a clear difference in intensity between the relevant
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TABLE 6 An (Artificial) Example of PCA using a Centered and Normalized Matrix

For For
Hedonic Meat Dessert Price Sugar Alcohol Acidity

Wine 1 14 7 8 7 7 13 7

Wine 2 10 7 6 4 3 14 7

Wine 3 8 5 5 10 5 12 5

Wine 4 2 4 7 16 7 11 3

Wine 5 6 2 4 13 3 10 3

Five wines are described by seven variables [data from Ref 44].

factors (whose eigenvalues are clearly larger than one)
and the noise (represented by factors with eigenvalues
clearly smaller than one), then the rotation is likely
to provide a solution that is more reliable than the
original solution. However, if this model does not
accurately represent the data, then rotation will make
the solution less replicable and potentially harder to
interpret because the mathematical properties of PCA
have been lost.

EXAMPLES

Correlation PCA
Suppose that we have five wines described by the
average ratings of a set of experts on their hedonic
dimension, how much the wine goes with dessert, and
how much the wine goes with meat. Each wine is also
described by its price, its sugar and alcohol content,
and its acidity. The data [from Refs 40,44] are given
in Table 6.

A PCA of this table extracts four factors (with
eigenvalues of 4.76, 1.81, 0.35, and 0.07, respec-
tively). Only two components have an eigenvalue
larger than 1 and, together, these two components
account for 94% of the inertia. The factor scores for
the first two components are given in Table 7 and the
corresponding map is displayed in Figure 5.

TABLE 7 PCA Wine Characteristics Factor scores, contributions
of the observations to the components, and squared cosines of the
observations on principal components 1 and 2.

F1 F2 ctr1 ctr2 cos2
1 cos2

2

Wine 1 −1.17 −0.55 29 17 77 17

Wine 2 −1.04 0.61 23 21 69 24

Wine 3 0.08 0.19 0 2 7 34

Wine 4 0.89 −0.86 17 41 50 46

Wine 5 1.23 0.61 32 20 78 19

The positive important contributions are italicized, and the negative
important contributions are represented in bold. For convenience, squared
cosines and contributions have been multiplied by 100 and rounded.

Wine 1

Wine 2

Wine 3

Wine 4

Wine 5

PC1

PC2

FIGURE 5 | PCA wine characteristics. Factor scores of the
observations plotted on the first two components. λ1 = 4.76,
τ 1 = 68%; λ2 = 1.81, τ 2 = 26%.

We can see from Figure 5 that the first com-
ponent separates Wines 1 and 2 from Wines 4 and
5, while the second component separates Wines 2
and 5 from Wines 1 and 4. The examination of the
values of the contributions and cosines, shown in
Table 7, complements and refines this interpretation
because the contributions suggest that Component 1
essentially contrasts Wines 1 and 2 with Wine 5 and
that Component 2 essentially contrasts Wines 2 and
5 with Wine 4. The cosines show that Component
1 contributes highly to Wines 1 and 5, while
Component 2 contributes most to Wine 4.

To find the variables that account for these
differences, we examine the loadings of the variables
on the first two components (see Table 8) and the circle
of correlations (see Figure 6 and Table 9). From these,
we see that the first component contrasts price with
the wine’s hedonic qualities, its acidity, its amount
of alcohol, and how well it goes with meat (i.e., the
wine tasters preferred inexpensive wines). The second
component contrasts the wine’s hedonic qualities,
acidity, and alcohol content with its sugar content and
how well it goes with dessert. From this, it appears
that the first component represents characteristics that
are inversely correlated with a wine’s price while the
second component represents the wine’s sweetness.

To strengthen the interpretation, we can apply
a varimax rotation, which gives a clockwise rotation
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TABLE 8 PCA Wine Characteristics. Loadings (i.e., Q matrix) of the Variables on the
First Two Components

For For

Hedonic Meat Dessert Price Sugar Alcohol Acidity

PC 1 −0.40 −0.45 −0.26 0.42 −0.05 −0.44 −0.45

PC 2 0.11 −0.11 −0.59 −0.31 −0.72 0.06 0.09

TABLE 9 PCA Wine Characteristics. Correlation of the Variables with the First Two
Components

For For

Hedonic meat dessert Price Sugar Alcohol Acidity

PC 1 −0.87 −0.97 −0.58 0.91 −0.11 −0.96 −0.99

PC 2 0.15 −0.15 −0.79 −0.42 −0.97 0.07 0.12

Price

Sugar

Alcohol
Acidity
Hedonic

For meat

For dessert

PC1

PC2

FIGURE 6 | PCA wine characteristics. Correlation (and circle of
correlations) of the Variables with Components 1 and 2. λ1 = 4.76,
τ 1 = 68%; λ2 = 1.81, τ 2 = 26%.

of 15◦ (corresponding to a cosine of 0.97). This gives
the new set of rotated loadings shown in Table 10.
The rotation procedure is illustrated in Figure 7. The
improvement in the simplicity of the interpretation
is marginal, maybe because the component structure
of such a small data set is already very simple. The
first dimension remains linked to price and the second
dimension now appears more clearly as the dimension
of sweetness.

Covariance PCA
Here we use data from a survey performed in the
1950s in France [data from Ref 45]. The data table
gives the average number of Francs spent on several
categories of food products according to social class
and the number of children per family. Because a
Franc spent on one item has the same value as a Franc

spent on another item, we want to keep the same unit
of measurement for the complete space. Therefore
we will perform a covariance PCA, rather than a
correlation PCA. The data are shown in Table 11.

A PCA of the data table extracts seven compo-
nents (with eigenvalues of 3,023,141.24, 290,575.84,
68,795.23, 25,298.95, 22,992.25, 3,722.32, and
723.92, respectively). The first two components
extract 96% of the inertia of the data table, and
we will keep only these two components for further
consideration (see also Table 14 for the choice of the
number of components to keep). The factor scores for
the first two components are given in Table 12 and
the corresponding map is displayed in Figure 8.

We can see from Figure 8 that the first
component separates the different social classes, while
the second component reflects the number of children
per family. This shows that buying patterns differ
both by social class and by number of children
per family. The contributions and cosines, given in
Table 12, confirm this interpretation. The values of the
contributions of the observations to the components
indicate that Component 1 contrasts blue collar
families with three children to upper class families
with three or more children whereas Component
2 contrasts blue and white collar families with
five children to upper class families with three and
four children. In addition, the cosines between the
components and the variables show that Component
1 contributes to the pattern of food spending seen
by the blue collar and white collar families with two
and three children and to the upper class families with
three or more children while Component 2 contributes
to the pattern of food spending by blue collar families
with five children.

To find the variables that account for these
differences, we refer to the squared loadings of the
variables on the two components (Table 13) and to
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TABLE 10 PCA Wine Characteristics: Loadings (i.e., Q matrix), After Varimax
Rotation, of the Variables on the First Two Components

For For

Hedonic Meat Dessert Price Sugar Alcohol Acidity

PC 1 −0.41 −0.41 −0.11 0.48 0.13 −0.44 −0.46

PC 2 0.02 −0.21 −0.63 −0.20 −0.71 −0.05 −0.03

TABLE 11 Average Number of Francs Spent (per month) on Different Types of Food According To
Social Class and Number of Children [dataset from Ref 45]

Type of Food

Bread Vegetables Fruit Meat Poultry Milk Wine

Blue collar 2 Children 332 428 354 1437 526 247 427

White collar 2 Children 293 559 388 1527 567 239 258

Upper class 2 Children 372 767 562 1948 927 235 433

Blue collar 3 Children 406 563 341 1507 544 324 407

White collar 3 Children 386 608 396 1501 558 319 363

Upper class 3 Children 438 843 689 2345 1148 243 341

Blue collar 4 Children 534 660 367 1620 638 414 407

White collar 4 Children 460 699 484 1856 762 400 416

Upper class 4 Children 385 789 621 2366 1149 304 282

Blue collar 5 Children 655 776 423 1848 759 495 486

White collar 5 Children 584 995 548 2056 893 518 319

Upper class 5 Children 515 1097 887 2630 1167 561 284

Mean 447 732 505 1887 803 358 369

Ŝ 107 189 165 396 250 117 72

TABLE 12 PCA Example. Amount of Francs Spent (per month) by Food Type, Social Class,
and Number of Children. Factor scores, contributions of the observations to the components,
and squared cosines of the observations on principal components 1 and 2

F1 F2 ctr1 ctr2 cos2
1 cos2

2

Blue collar 2 Children 635.05 −120.89 13 5 95 3

White collar 2 Children 488.56 −142.33 8 7 86 7

Upper class 2 Children −112.03 −139.75 0 7 26 40

Blue collar 3 Children 520.01 12.05 9 0 100 0

White collar 3 Children 485.94 1.17 8 0 98 0

Upper class 3 Children −588.17 −188.44 11 12 89 9

Blue collar 4 Children 333.95 144.54 4 7 83 15

White collar 4 Children 57.51 42.86 0 1 40 22

Upper class 4 Children −571.32 −206.76 11 15 86 11

Blue collar 5 Children 39.38 264.47 0 24 2 79

White collar 5 Children −296.04 235.92 3 19 57 36

Upper class 5 Children −992.83 97.15 33 3 97 1

The positive important contributions are italicized, and the negative important contributions are
represented in bold. For convenience, squared cosines and contributions have been multiplied by 100
and rounded.
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FIGURE 7 | PCA wine characteristics. (a) Original loadings of the
seven variables. (b) The loadings of the seven variables showing the
original axes and the new (rotated) axes derived from varimax. (c) The
loadings after varimax rotation of the seven variables.
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FIGURE 8 | PCA example. Amount of Francs spent (per month) on
food type by social class and number of children. Factor scores for
principal components 1 and 2. λ1 = 3,023,141.24, τ 1 = 88%;
λ2 = 290,575.84, τ 2 = 8%. BC = blue collar; WC = white collar; UC
= upper class; 2 = 2 children; 3 = 3 children; 4 = 4 children; 5 = 5
children..

TABLE 13 PCA example: Amount of Francs Spent (per
month) on Food Type by Social Class and Number of Children.
Squared Loadings of the Variables on Components 1 and 2

Bread Vegetables Fruit Meat Poultry Milk Wine

PC 1 0.01 0.33 0.16 0.01 0.03 0.45 0.00

PC 2 0.11 0.17 0.09 0.37 0.18 0.03 0.06

the circle of correlations (see Figure 9). From these,
we see that the first component contrasts the amount
spent on wine with all other food purchases, while
the second component contrasts the purchase of milk
and bread with meat, fruit, and poultry. This indicates
that wealthier families spend more money on meat,
poultry, and fruit when they have more children, while
white and blue collar families spend more money on
bread and milk when they have more children. In
addition, the number of children in upper class families
seems inversely correlated with the consumption of
wine (i.e., wealthy families with four or five children
consume less wine than all other types of families).
This curious effect is understandable when placed in
the context of the French culture of the 1950s, in
which wealthier families with many children tended
to be rather religious and therefore less inclined to
indulge in the consumption of wine.

Recall that the first two components account
for 96% of the total inertia [i.e., (λ1 + λ2)/I =
(3,023,141.24 + 290,575.84)/3,435,249.75 = 0.96].
From Table 14 we find that RESS2 is equal to 4% and
this value represents the error when X̂ is estimated
from Components 1 and 2 together. This means that
for a fixed effect model, a two-component solution
represents X well. PRESS2, the error of estimation
using a random effect model with two components, is
equal to 8% and this value indicates that X̃ represents
X adequately. Together, the values of RESS and
PRESS suggest that only the first two components
should be kept.
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FIGURE 9 | PCA example: Amount of Francs spent (per month) on
food type by social class and number of children. Correlations (and
circle of correlations) of the variables with Components 1 and 2.
λ1 = 3,023,141.24, τ 1 = 88%; λ2 = 290,575.84, τ 2 = 8%.

To confirm the number of components to keep,
we look at Q2 and W. The Q2 values of 0.82 and 0.37
for Components 1 and 2 both exceed the critical value
of 0.095, indicating that both components should be
kept. Note that a negative Q2 value suggests that a
component should not be kept. In contrast, the W
values of 1.31 and 0.45 for the first two components
suggest that only the first component should be kept
because only W1 is greater than 1.

SOME EXTENSIONS OF PCA

Correspondence Analysis
Correspondence analysis (CA; see Refs 46–51) is
an adaptation of PCA tailored to handle nominal
variables. It can be interpreted as a particular case
of generalized PCA for which we take into account
masses (for the rows) and weights (for the columns).
CA analyzes a contingency table and provides factor
scores for both the rows and the columns of
the contingency table. In CA, the inertia of the
contingency table is proportional to the χ2 which
can be computed to test the independence of the
rows and the columns of this table. Therefore, the
factor scores in CA decompose this independence χ2

into orthogonal components (in the CA tradition,
these components are often called factors rather than
components, here, for coherence, we keep the name
component for both PCA and CA).

Notations
The I × J contingency table to be analyzed is denoted
X. CA will provide two sets of factor scores: one for

the rows and one for the columns. These factor scores
are, in general, scaled such that their inertia is equal to
their eigenvalue (some versions of CA compute row or
column factor scores normalized to unity). The grand
total of the table is denoted N.

Computations
The first step of the analysis is to compute the
probability matrix Z = N−1X. We denote r the vector
of the row totals of Z, (i.e., r = Z1, with 1 being a
conformable vector of 1s), c the vector of the columns
totals, and Dc = diag {c}, Dr = diag {r}. The factor
scores are obtained from the following generalized
SVD (see Appendix ):

(
Z − rcT

)
= P̃�̃Q̃T with P̃TD−1

r P̃ = Q̃TD−1
c Q̃ = I

(24)

The row and (respectively) column factor scores are
obtained as:

F = D−1
r P̃�̃ and G = D−1

c Q̃�̃ (25)

In CA, the rows and the columns of the
table have a similar role, and therefore we have
contributions and cosines for both sets. These are
obtained in a similar way as for standard PCA,
but the computations of the contributions need to
integrate the values of the masses (i.e., the elements
of r) and weights (i.e., the elements of c). Specifically,
the contribution of row i to component � and of
column j to component � are obtained respectively
as:

ctri,� =
rif 2

i,�

λ�

and ctrj,� =
cjg2

j,�

λ�

(26)

(with ri begin the ith element of r and cj being the
j-th element of c). As for standard PCA, contributions
help locating the observations or variables important
for a given component.

The vector of the squared (χ2) distance from the
rows and columns to their respective barycenter are
obtained as:

dr = diag
{
FFT

}
and dc = diag

{
GGT

}
(27)

As for PCA, the total inertia in CA is equal to the
sum of the eigenvalues. By contrast with PCA, the
total inertia can also be computed equivalently as the
weighted sum of the squared distances of the rows or
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TABLE 14 PCA Example: Amount of Francs Spent (per month) on Food Type by Social Class and Number of children. Eigenvalues,
cumulative eigenvalues, RESS, PRESS, Q2, and W values for all seven components

λ λ/I
∑

λ
∑

λ/I RESS RESS/I PRESS PRESS/I Q2 W

PC 1 3,023,141.24 0.88 3,023,141.24 0.88 412,108.51 0.12 610,231.19 0.18 0.82 1.31

PC 2 290,575.84 0.08 3,313,717.07 0.96 121,532.68 0.04 259,515.13 0.08 0.37 0.45

PC 3 68,795.23 0.02 3,382,512.31 0.98 52,737.44 0.02 155,978.58 0.05 −0.28 0.27

PC 4 25,298.95 0.01 3,407,811.26 0.99 27,438.49 0.01 152,472.37 0.04 −1.89 0.01

PC 5 22,992.25 0.01 3,430,803.50 1.00 4,446.25 0.00 54,444.52 0.02 −0.98 1.35

PC 6 3,722.32 0.00 3,434,525.83 1.00 723.92 0.00 7,919.49 0.00 −0.78 8.22

PC 7 723.92 0.00 3,435,249.75 1.00 0.00 0.00 0.00 0.00 1.00 ∞∑
3,435,249.75 1.00

I

the columns to their respective barycenter. Formally,
the inertia can be computed as:

I =
L∑
l

λ� = rTdr = cTdc (28)

The squared cosine between row i and compo-
nent � and column j and component � are obtained
respectively as:

cos2
i,� =

f 2
i,�

d2
r,i

and cos2
j,� =

g2
j,�

d2
c,j

(29)

(with d2
r,i and d2

c,j, being respectively the i-th element
of dr and the j-th element of dc). Just like for
PCA, squared cosines help locating the components
important for a given observation or variable.

And just like for PCA, supplementary or
illustrative elements can be projected onto the
components, but the CA formula needs to take into
account masses and weights. The projection formula,
is called the transition formula and it is specific to CA.
Specifically, let iTsup being an illustrative row and jsup

being an illustrative column to be projected (note that
in CA, prior to projection, a illustrative row or column
is re-scaled such that its sum is equal to one). Their
coordinates of the illustrative rows (denoted fsup) and
column (denoted gsup) are obtained as:

fsup =
(
iTsup1

)−1
iTsupG�̃

−1
and gsup

=
(
jTsup1

)−1
jTsupF�̃

−1
(30)

[note that the scalar terms
(
iTsup1

)−1
and

(
jTsup1

)−1

are used to ensure that the sum of the elements of isup

or jsup is equal to one, if this is already the case, these
terms are superfluous].

Example
For this example, we use a contingency table that
gives the number of punctuation marks used by the
French writers Rousseau, Chateaubriand, Hugo, Zola,
Proust, and Giraudoux [data from Ref 52]. This table
indicates how often each writer used the period, the
comma, and all other punctuation marks combined
(i.e., interrogation mark, exclamation mark, colon,
and semicolon). The data are shown in Table 15.

A CA of the punctuation table extracts two
components which together account for 100% of
the inertia (with eigenvalues of .0178 and .0056,
respectively). The factor scores of the observations
(rows) and variables (columns) are shown in Tables 16
and the corresponding map is displayed in Figure 10.

We can see from Figure 10 that the first
component separates Proust and Zola’s pattern of
punctuation from the pattern of punctuation of
the other four authors, with Chateaubriand, Proust,
and Zola contributing most to the component.
The squared cosines show that the first component
accounts for all of Zola’s pattern of punctuation (see
Table 16).

The second component separates Giraudoux’s
pattern of punctuation from that of the other authors.
Giraudoux also has the highest contribution indicating
that Giraudoux’s pattern of punctuation is important
for the second component. In addition, for Giraudoux
the highest squared cosine (94%), is obtained for
Component 2. This shows that the second component
is essential to understand Giraudoux’s pattern of
punctuation (see Table 16).

In contrast with PCA, the variables (columns)
in CA are interpreted identically to the rows. The
factor scores for the variables (columns) are shown in
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TABLE 15 The Punctuation Marks of Six French Writers (from Ref 52).

Author’s Name Period Comma Other xi+ r

Rousseau 7,836 13,112 6,026 26,974 0.0189

Chateaubriand 53,655 102,383 42,413 198,451 0.1393

Hugo 115,615 184,541 59,226 359,382 0.2522

Zola 161,926 340,479 62,754 565,159 0.3966

Proust 38,177 105,101 12,670 155,948 0.1094

Giraudoux 46,371 58,367 14,299 119,037 0.0835

x+j 423,580 803,983 197,388 N = 142,4951 1.0000

cT 0.2973 0.5642 0.1385

The column labeled xi+ gives the total number of punctuation marks used by each author. N is the
grand total of the data table. The vector of mass for the rows, r, is the proportion of punctuation marks
used by each author (ri = xi+/N). The row labeled x+j gives the total number of times each punctuation

mark was used. The centroid row, cT, gives the proportion of each punctuation mark in the sample
(cj = x+j/N).

TABLE 16 CA punctuation. Factor scores, contributions, mass, mass × squared factor scores, inertia to barycenter, and
squared cosines for the rows.

ri× ri× ri×
F1 F2 ctr1 ctr2 ri F2

1 F2
2 d2

r,i cos2
1 cos2

2

Rousseau −0.24 −0.07 6 2 0.0189 0.0011 0.0001 0.0012 91 9

Chateaubriand −0.19 −0.11 28 29 0.1393 0.0050 0.0016 0.0066 76 24

Hugo −0.10 0.03 15 4 .2522 0.0027 0.0002 0.0029 92 8

Zola 0.09 −0.00 19 0 .3966 0.0033 0.0000 0.0033 100 0

Proust 0.22 −0.06 31 8 .1094 0.0055 0.0004 .0059 93 7

Giraudoux −0.05 0.20 1 58 0.0835 0.0002 0.0032 0.0034 6 94∑
— — 100 100 — .0178 .0056 .0234

λ1 λ2 I
76% 24%

τ 1 τ2

The positive important contributions are italicized, and the negative important contributions are represented in bold. For convenience,
squared cosines and contributions have been multiplied by 100 and rounded.

Zola
Period

Giraudoux

Rousseau

Chateaubriand

Other
marks

Hugo

Comma
Proust

PC1

PC2

FIGURE 10 | CA punctuation. The projections of the rows and the
columns are displayed in the same map. λ1 = 0.0178, τ 1 = 76.16;
λ2 = 0.0056, τ 2 = 23.84.

Table 17 and the corresponding map is displayed in
the same map as the observations shown in Figure 10.

From Figure 10 we can see that the first
component also separates the comma from the
‘others’ punctuation marks. This is supported by the
high contributions of ‘others’ and comma to the com-
ponent. The cosines also support this interpretation
because the first component accounts for 88% of the
use of the comma and 91% of the use of the ‘others’
punctuation marks (see Table 17).

The second component separates the period
from both the comma and the ‘other’ punctuation
marks. This is supported by the period’s high contri-
bution to the second component and the component’s
contribution to the use of the period (see Table 17).
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TABLE 17 CA punctuation. Factor scores, contributions, mass, mass × squared factor scores, inertia to
barycenter, and squared cosines for the columns

cj× cj× cj×
F1 F2 ctr1 ctr2 cj F2

1 F2
2 d2

c,j cos2
1 cos2

2

Period −0.05 0.11 4 66 .2973 0.0007 0.0037 0.0044 16 84

Comma 0.10 −0.04 30 14 .5642 0.0053 0.0008 0.0061 88 12

Other −0.29 −0.09 66 20 .1385 0.0118 0.0011 0.0129 91 9∑
— — 100 100 — .0178 0.0056 0.0234

λ1 λ2 I
76% 24%

τ1 τ 2

The positive important contributions are italicized, and the negative important contributions are represented in bold. For
convenience, squared cosines, and contributions have been multiplied by 100 and rounded.

Together, the pattern of distribution of the
points representing the authors and the punctuation
marks suggest that some of the differences in the
authors’ respective styles can be attributed to differ-
ences in their use of punctuation. Specifically, Zola’s
œuvre is characterized by his larger than average use
of the comma, while Chateaubriand’s is characterized
by his larger than average use of other types of
punctuation marks than the period and the comma.
In addition, Giraudoux’s œuvre is characterized by a
larger than average use of the period.

Multiple Factor Analysis
Multiple factor analysis [MFA; see Refs 53–55] is
used to analyze a set of observations described by
several groups of variables. The number of variables
in each group may differ and the nature of the
variables (nominal or quantitative) can vary from
one group to the other but the variables should be of
the same nature in a given group. The analysis derives
an integrated picture of the observations and of the
relationships between the groups of variables.

Notations
The data consists of T data sets. Each data set is called
a subtable. Each subtable is an I ×[t] J rectangular
data matrix, denoted [t]Y, where I is the number of
observations and [t] J the number of variables of the
t-th subtable. The total number of variables is equal
to J, with:

J =
∑

t
[t] J . (31)

Each subtable is preprocessed (e.g., centered and
normalized) and the preprocessed data matrices
actually used in the analysis are denoted [t]X.

The �-th eigenvalue of the t-th subtable is
denoted [t]��. The �-th singular value of the t-th
subtable is denoted [t]ϕ�.

Computations
The goal of MFA is to integrate different groups
of variables (i.e., different subtables) describing the
same observations. In order to do so, the first step is
to make these subtables comparable. Such a step is
needed because the straightforward analysis obtained
by concatenating all variables would be dominated
by the subtable with the strongest structure (which
would be the subtable with the largest first singular
value). In order to make the subtables comparable,
we need to normalize them. To normalize a subtable,
we first compute a PCA for this subtable. The first
singular value (i.e., the square root of the first
eigenvalue) is the normalizing factor which is used
to divide the elements of this subtable. So, formally,
The normalized subtables are computed as:

[t]Z = 1√
[t]�1

× [t]X = 1

[t]ϕ1
× [t]X (32)

The normalized subtables are concatenated
into an I × J matrix called the global data matrix
and denoted Z. A PCA is then run on Z to get a
global solution. Note that because the subtables have
previously been centered and normalized with their
first singular value, Z is centered but it is not normal-
ized (i.e., columns from different subtables have, in
general, different norms).

To find out how each subtable performs relative
to the global solution, each subtable (i.e., each [t]X)
is projected into the global space as a supplementary
element.

As in standard PCA, variable loadings are
correlations between original variables and global
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factor scores. To find the relationship between the
variables from each of the subtables and the global
solution we compute loadings (i.e., correlations)
between the components of each subtable and the
components of the global analysis.

Example
Suppose that three experts were asked to rate six
wines aged in two different kinds of oak barrel from
the same harvest of Pinot Noir [example from Ref 55].
Wines 1, 5, and 6 were aged with a first type of oak,
and Wines 2, 3, and 4 with a second type of oak. Each
expert was asked to choose from 2 to 5 variables to
describe the wines. For each wine, the expert rated the
intensity of his/her variables on a 9-point scale. The
data consist of T = 3 subtables, which are presented
in Table 18.

The PCAs on each of the three subtables
extracted eigenvalues of 1�1 = 2.86, 2�1 = 3.65,
and 3�1 = 2.50 with singular values of 1ϕ1 = 1.69,
2ϕ1 = 1.91, and 3ϕ1 = 1.58, respectively.

Following normalization and concatenation of
the subtables, the global PCA extracted five compo-
nents (with eigenvalues of 2.83, 0.36, 0.11, 0.03, and
0.01). The first two components explain 95% of the
inertia. The factor scores for the first two components
of the global analysis are given in Table 19 and the
corresponding map is displayed in Figure 11a.

We can see from Figure 11 that the first
component separates the first type of oak (Wines 1, 5,
and 6) from the second oak type (Wines 2, 3, and 4).

In addition to examining the placement of the
wines, we wanted to see how each expert’s ratings
fit into the global PCA space. We achieved this by
projecting the data set of each expert as a supplemen-
tary element [see Ref 18 for details of the procedure].
The factor scores are shown in Table 19. The experts’
placement in the global map is shown in Figure 11b.
Note that the position of each wine in the global analy-
sis is the center of gravity of its position for the experts.
The projection of the experts shows that Expert 3’s
ratings differ from those of the other two experts.

The variable loadings show the correlations
between the original variables and the global factor
scores (Table 20). These loadings are plotted in
Figure 12. This figure also represents the load-
ings (Table 21) between the components of each
subtable and the components of the global analysis
as the ‘circle of correlations’ specific to each expert.
From this we see that Expert 3 differs from the other
experts, and is mostly responsible for the second
component of the global PCA.

4

3

2 1

5

6

PC1

PC2

2 1

4

6

5

3

PC1

PC2

(a)

(b)

FIGURE 11 | MFA wine ratings and oak type. (a) Plot of the global
analysis of the wines on the first two principal components. (b)
Projection of the experts onto the global analysis. Experts are
represented by their faces. A line segment links the position of the wine
for a given expert to its global position. λ1 = 2.83, τ 1 = 84%;
λ2 = 2.83, τ 2 = 11%.

CONCLUSION

PCA is very versatile, it is the oldest and remains the
most popular technique in multivariate analysis. In
addition to the basics presented here, PCA can also
be interpreted as a neural network model [see, e.g.,
Refs 56,57]. In addition to CA, covered in this paper,
generalized PCA can also be shown to incorporate
a very large set of multivariate techniques such as
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TABLE 18 Raw Data for the Wine Example [from Ref 55

Expert 1 Expert 2 Expert 3

Wines Oak Type Fruity Woody Coffee Red Fruit Roasted Vanillin Woody Fruity Butter Woody

Wine 1 1 1 6 7 2 5 7 6 3 6 7

Wine 2 2 5 3 2 4 4 4 2 4 4 3

Wine 3 2 6 1 1 5 2 1 1 7 1 1

Wine 4 2 7 1 2 7 2 1 2 2 2 2

Wine 5 1 2 5 4 3 5 6 5 2 6 6

Wine 6 1 3 4 4 3 5 4 5 1 7 5

canonical variate analysis, linear discriminant analysis
[see, e.g., Ref 47], and barycentric discriminant
analysis techniques such as discriminant CA [see e.g.,
Refs 58–61].

APPENDIX A: EIGENVECTORS AND
EIGENVALUES
Eigenvectors and eigenvalues are numbers and vectors
associated to square matrices. Together they provide
the eigen-decomposition of a matrix, which analyzes
the structure of this matrix. Even though the eigen-
decomposition does not exist for all square matrices,
it has a particularly simple expression for matrices
such as correlation, covariance, or cross-product
matrices. The eigen-decomposition of this type of
matrices is important because it is used to find

the maximum (or minimum) of functions involving
these matrices. Specifically PCA is obtained from the
eigen-decomposition of a covariance or a correlation
matrix.

Notations and Definition
There are several ways to define eigenvectors and
eigenvalues, the most common approach defines an
eigenvector of the matrix A as a vector u that satisfies
the following equation:

Au = λu . (A.1)

When rewritten, the equation becomes:

(A − λI)u = 0, (A.2)

TABLE 19 MFA Wine Ratings and Oak Type. Factor Scores for the Global Analysis, Expert 1,
Expert 2, and Expert 3 for the First Two Components

Global Expert 1sup Expert 2sup Expert 3sup

F1 F2 [1] F1 [1] F2 [2] F1 [2] F2 [3] F1 [3] F2

Wine 1 2.18 −0.51 2.76 −1.10 2.21 −0.86 1.54 0.44

Wine 2 −0.56 −0.20 −0.77 0.30 −0.28 −0.13 −0.61 −0.76

Wine 3 −2.32 −0.83 −1.99 0.81 −2.11 0.50 −2.85 −3.80

Wine 4 −1.83 0.90 −1.98 0.93 −2.39 1.23 −1.12 0.56

Wine 5 1.40 0.05 1.29 −0.62 1.49 −0.49 1.43 1.27

Wine 6 1.13 0.58 0.69 −0.30 1.08 −0.24 1.62 2.28

sup, supplementary element.

TABLE 20 MFA Wine Ratings and Oak Type. Loadings (i.e., correlations) on the Principal Components of the Global Analysis of the
Original Variables. Only the First Three Dimensions are Kept

Loadings with Original Variables
Expert 1 Expert 2 Expert 3

PC λ τ (%) Fruity Woody Coffee Fruit Roasted Vanillin Woody Fruity Butter Woody

1 2.83 85 −0.97 0.98 0.92 −0.89 0.96 0.95 0.97 −0.59 0.95 0.99

2 0.36 11 0.23 −0.15 −0.06 0.38 −0.00 −0.20 0.10 −0.80 0.19 0.00

3 0.12 3 0.02 −0.02 −0.37 −0.21 0.28 −0.00 −0.14 0.08 0.24 −0.11

452  2010 John Wi ley & Sons, Inc. Volume 2, Ju ly/August 2010



WIREs Computational Statistics Principal component analysis

TABLE 21 MFA Wine Ratings and Oak Type. Loadings (i.e., correlations) on the
Principal Components of the Global Analysis of the Principal Components of the Subtable
PCAs

Loadings with First Two Components from Subtable PCAs

Expert 1 Expert 2 Expert 3

PC λ τ (%) [1] PC1 [1] PC2 [2] PC1 [2] PC2 [3] PC1 [3] PC2

1 2.83 85 .98 0.08 0.99 −0.16 0.94 −0.35

2 0.36 11 −0.15 −0.28 −0.13 −0.76 0.35 0.94

3 0.12 3 −0.14 0.84 0.09 0.58 0.05 −.01

Only the first three dimensions are kept.

where λ is a scalar called the eigenvalue associated to
the eigenvector.

In a similar manner, we can also say that a vector
u is an eigenvector of a matrix A if the length of the
vector (but not its direction) is changed when it is
multiplied by A.

For example, the matrix:

A =
[
2 3
2 1

]
(A.3)

has for eigenvectors:

u1 =
[
3
2

]
with eigenvalue λ1 = 4 (A.4)

and

u2 =
[−1

1

]
with eigenvalue λ2 = −1 (A.5)

For most applications we normalize the eigen-
vectors (i.e., transform them such that their length is
equal to one), therefore

uTu = 1 (A.6)

Traditionally, we put the set of eigenvectors
of A in a matrix denoted U. Each column of U is
an eigenvector of A. The eigenvalues are stored in
a diagonal matrix (denoted �), where the diagonal
elements gives the eigenvalues (and all the other values
are zeros). We can rewrite the Eq. A.1 as:

AU = �U; (A.7)

or also as:

A = U�U−1. (A.8)

For the previous example we obtain:

A = U�U−1

=
[

3 −1
2 1

][
4 0
0 −1

][
2 2

−4 6

]

=
[

2 3
2 1

]
(A.9)

Together, the eigenvectors and the eigenvalues
of a matrix constitute the eigen-decomposition of this
matrix. It is important to note that not all matrices
have an eigen-decomposition. This is the case, e.g.,

of the matrix
[
0 1
0 0

]
. Also some matrices can have

imaginary eigenvalues and eigenvectors.

Positive (semi-)Definite Matrices
A type of matrices used very often in statistics are
called positive semi-definite. The eigen-decomposition
of these matrices always exists, and has a particularly
convenient form. A matrix is said to be positive semi-
definite when it can be obtained as the product of a
matrix by its transpose. This implies that a positive
semi-definite matrix is always symmetric. So, formally,
the matrix A is positive semi-definite if it can be
obtained as:

A = XXT (A.10)

for a certain matrix X (containing real numbers).
In particular, correlation matrices, covariance, and
cross-product matrices are all positive semi-definite
matrices.

The important properties of a positive semi-
definite matrix is that its eigenvalues are always
positive or null, and that its eigenvectors are pairwise
orthogonal when their eigenvalues are different.
The eigenvectors are also composed of real values
(these last two properties are a consequence of
the symmetry of the matrix, for proofs see, e.g.,
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FIGURE 12 | MFA wine ratings and oak type. Circles of correlations
for the original variables. Each experts’ variables have been separated
for ease of interpretation. .

Refs 62,63). Because eigenvectors corresponding to
different eigenvalues are orthogonal, it is possible to
store all the eigenvectors in an orthogonal matrix
(recall that a matrix is orthogonal when the product
of this matrix by its transpose is a diagonal matrix).

This implies the following equality:

U−1 = UT. (A.11)

We can, therefore, express the positive semi-definite
matrix A as:

A = U�UT with UTU = I (A.12)

where U is the matrix storing the normalized
eigenvectors; if these are not normalized then UTU
is a diagonal matrix.

For example, the matrix:

A =
[
3 1
1 3

]
(A.13)

can be decomposed as:

A = U�UT

=



√
1
2

√
1
2√

1
2 −

√
1
2


[

4 0
0 2

] 


√
1
2

√
1
2√

1
2 −

√
1
2




=
[
3 1
1 3

]
(A.14)

with


√
1
2

√
1
2√

1
2 −

√
1
2







√
1
2

√
1
2√

1
2 −

√
1
2


 =

[
1 0
0 1

]
(A.15)

Statistical Properties of the
Eigen-decomposition
The eigen-decomposition is important because it is
involved in problems of optimization. Specifically, in
PCA, we want to find row factor scores, obtained as
linear combinations of the columns of X such that
these factor scores ‘explain’ as much of the variance
of X as possible and such that the sets of factor scores
are pairwise orthogonal. We impose as a constraint
that the coefficients of the linear combinations are
finite and this constraint is, in general, expressed as
imposing to the sum of squares of the coefficients of
each linear combination to be equal to unity. This
amounts to defining the factor score matrix as:

F = XQ, (A.16)
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(with the matrix Q being the matrix of coefficients
of the ‘to-be-found’ linear combinations) under the
constraints that

FTF = QTXTXQ (A.17)

is a diagonal matrix (i.e., F is an orthogonal matrix)
and that

QTQ = I (A.18)

(i.e., Q is an orthonormal matrix). The solution of
this problem can be obtained with the technique of
the Lagrangian multipliers where the constraint from
Eq. A.18 is expressed as the multiplication with a
diagonal matrix of Lagrangian multipliers, denoted
�, in order to give the following expression

�
(
QTQ − I

)
(A.19)

(see Refs 62,64; for details). This amount for defining
the following equation

L = trace
{
FTF − �

(
QTQ − I

)}
(A.20)

= trace
{
QTXTXQ − �

(
QTQ − I

)}

(where the trace {} operator gives the sum of the
diagonal elements of a square matrix). In order to find
the values of Q which give the maximum values of L,
we first compute the derivative of L relative to Q:

∂L
∂Q

= 2XTXQ − 2Q�, (A.21)

and then set this derivative to zero:

XTXQ − Q� = 0 ⇐⇒ XTXQ = Q�. (A.22)

This implies also that

XTX = Q�QT. (A.23)

Because � is diagonal, this is clearly an eigen-
decomposition problem, and this indicates that � is
the matrix of eigenvalues of the positive semi-definite
matrix XTX ordered from the largest to the smallest
and that Q is the matrix of eigenvectors of XTX
associated to �. Finally, we find that the factor matrix
has the form

F = XQ. (A.24)

The variance of the factors scores is equal to the
eigenvalues because:

FTF = QTXTXQ = QTQ�QTQ = �. (A.25)

Taking into account that the sum of the eigenvalues
is equal to the trace of XTX, this shows that the first
factor scores ‘extract’ as much of the variance of the
original data as possible, and that the second factor
scores extract as much of the variance left unexplained
by the first factor, and so on for the remaining factors.
Incidently, the diagonal elements of the matrix �

1
2

which are the standard deviations of the factor scores
are called the singular values of matrix X (see Section
on Singular Value Decomposition).

APPENDIX B: SINGULAR VALUE
DECOMPOSITION (SVD)

The SVD is a generalization of the eigen-
decomposition. The SVD decomposes a rectangular
matrix into three simple matrices: two orthogonal
matrices and one diagonal matrix. If A is a rectangular
matrix, its SVD gives

A = P�QT, (B.1)

with

• P: The (normalized) eigenvectors of the matrix
AAT (i.e., PTP = I). The columns of P are called
the left singular vectors of A.

• Q: The (normalized) eigenvectors of the matrix
ATA (i.e., QTQ = I). The columns of Q are called
the right singular vectors of A.

• �: The diagonal matrix of the singular values,
� = �

1
2 with � being the diagonal matrix of the

eigenvalues of matrix AAT and of the matrix ATA
(as they are the same).

The SVD is a straightforward consequence of the
eigen-decomposition of positive semi-definite matrices
[see, e.g., Refs 5,11,47,65].

Note that Eq. B.1 can also be rewritten as:

A = P�QT =
L∑

�=1

δ�p�qT
� , (B.2)

with L being the rank of X and δ�, p�, and q� being
(respectively) the �-th singular value, left and right
singular vectors of X. This shows that X can be
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reconstituted as a sum of L rank one matrices (i.e.,
the δ�p�qT

� terms). The first of these matrices gives the
best reconstitution of X by a rank one matrix, the sum
of the first two matrices gives the best reconstitution
of X with a rank two matrix, and so on, and, in
general, the sum of the first M matrices gives the best
reconstitution of X with a matrix of rank M.

Generalized Singular Value Decomposition
The generalized singular value decomposition (GSVD)
decomposes a rectangular matrix and takes into
account constraints imposed on the rows and the
columns of the matrix. The GSVD gives a weighted
generalized least square estimate of a given matrix
by a lower rank matrix For a given I × J matrix
A, generalizing the SVD, involves using two positive
definite square matrices with size I × I and J × J. These
two matrices express constraints imposed on the rows
and the columns of A, respectively. Formally, if M
is the I × I matrix expressing the constraints for the
rows of A and W the J × J matrix of the constraints for
the columns of A. The matrix A is now decomposed
into:

A = P̃�̃Q̃T with: P̃TMP̃ = Q̃TWQ̃ = I. (B.3)

In other words, the generalized singular vectors are
orthogonal under the constraints imposed by M
and W.

This decomposition is obtained as a result of the
standard SVD. We begin by defining the matrix Ã as:

Ã = M
1
2 AW

1
2 ⇐⇒ A = M− 1

2 ÃW− 1
2 . (B.4)

We then compute the standard singular value
decomposition as Ã as:

Ã = P�QT with: PTP = QTQ = I. (B.5)

The matrices of the generalized eigenvectors are
obtained as:

P̃ = M− 1
2 P and Q̃ = W− 1

2 Q. (B.6)

The diagonal matrix of singular values is simply equal
to the matrix of singular values of Ã:

�̃ = �. (B.7)

We verify that:

A = P̃�̃Q̃T

by substitution:

A = M− 1
2 ÃW− 1

2

= M− 1
2 P�QTW− 1

2

= P̃�Q̃T (from Eq. B.6). (B.8)

To show that Condition B.3 holds, suffice it to
show that:

P̃TMP̃ = PTM− 1
2 MM− 1

2 P = PTP = I (B.9)

and

Q̃TWQ̃ = QTW− 1
2 WW− 1

2 Q = QTQ = I. (B.10)

Mathematical Properties of the Singular
Value Decomposition
It can be shown that the SVD has the important
property of giving an optimal approximation of
a matrix by another matrix of smaller rank [see,
e.g., Ref 62,63,65]. In particular, the SVD gives the
best approximation, in a least square sense, of any
rectangular matrix by another rectangular matrix of
same dimensions, but smaller rank.

Precisely, if A is an I × J matrix of rank L (i.e.,
A contains L singular values that are not zero), we
denote it by P[M] (respectively Q[M], �[M]) the matrix
made of the first M columns of P (respectively Q, �):

P[M] = [
p1, . . . , pm, . . . , pM

]
(B.11)

Q[M] = [
q1, . . . , qm, . . . , qM

]
(B.12)

�[M] = diag {δ1, . . . , δm, . . . , δM} . (B.13)

The matrix A reconstructed from the first M
eigenvectors is denoted A[M]. It is obtained as:

A[M] = P[M]�[M]Q[M]T =
M∑
m

δmpmqT
m, (B.14)

(with δm being the m-th singular value).
The reconstructed matrix A[M] is said to be

optimal (in a least squares sense) for matrices of rank
M because it satisfies the following condition:

∥∥∥A − A[M]
∥∥∥2 = trace

{(
A − A[M]

)(
A − A[M]

)T
}

= min
X

∥∥A − X
∥∥2 (B.15)
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for the set of matrices X of rank smaller or equal to M

[see, e.g., Ref 65,66]. The quality of the reconstruction
is given by the ratio of the first M eigenvalues (i.e., the
squared singular values) to the sum of all the eigenval-
ues. This quantity is interpreted as the reconstructed

proportion or the explained variance, it corresponds
to the inverse of the quantity minimized by Eq. B.14.
The quality of reconstruction can also be interpreted
as the squared coefficient of correlation [precisely as

the Rv coefficient,18 between the original matrix and
its approximation.

The GSVD minimizes an expression similar to
Eq. B.14, namely

A[M] = min
X

[
trace

{
M (A − X) W (A − X)

T
}]

,

(B.16)

for the set of matrices X of rank smaller or equal to
M.
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